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HNPEINCJTOBHUE

B mocobne BKIFOYEHBI OpWUTHHANBHBIE TEKCTHI U3 AHTVIMHACKON W
aMEpHUKaHCKON JUTepaTypsl 1o cnenuansHocTy «lIpuknanHas mareMa-
TUKa» JJIS CaMOCTOSTEIbHONH pabOThl CTYACHTOB CTapiIuX KYpCOB.
Kaxnplit n3 Tpex pasesioB BKIIOYAET TAKKE 3a/JaHus M0 Pa3BUTHIO
HaBBIKOB I1€PEBO/IA C AHTTIMICKOrO sSI3bIKa HAa PYCCKHMA, BEAECHUs Oecebl
M0 OCHOBHBIM T€MaM, 3aTPOHYTHIM B IIOCOOMH, 33aHUs IO MIEPEBOLLY C
PYCCKOrO s3bIKa Ha aHTJIMWCKUMN, 0 OTPabOTKE JIEKCHUECKOTO U rpaM-
MaTHYECKOTO MaTepHualla, CBI3aHHOTO ¢ TekcTaMu. Ilocie mepBoro Tek-
CTa B K&KJIOM M3 TPEX Pa3[EeI0B MOMEIIEH CIOBAPh OCHOBHOM JIEKCHKH,
BKJIIOYAIOIIUI B TOM YHCJIE YaCTO UCIIOJIb3yEMBIE CIOBOCOUYETAHUS.

Biagenue TepMHUHONOrMER MO M3ydyaeMOM CHELUAIBHOCTU U SI3bI-
KOBBIMH 000pOTaMM HO3BOJIUT CTYJEHTaM U BBITYCKHUKAM I10Jy4aThb
HEOOXOUMYI0 MH(OpPMAINIO, 3HAKOMSICh C HAYYHO-TEXHHYECKOH JIU-
TepaTypoil Ha aHTJIMKICKOM S3BIKE, YY4aCTBOBaTh B OOCYXKAECHUH IIPO-
(heccHOHATIBHBIX BOIIPOCOB C HHOCTPAHHBIMU KOJUIETaMU.



UNIT 1

TASK 1. Read and translate the text.

Text 1 A. The Main Approaches to Solving Problems in Fluid
Mechanics and Heat Transfer

There are basically three approaches or methods which can be used
to solve a problem in fluid mechanics and heat transfer. These methods
are:

1) experimental;

2) theoretical;

3) numerical.

The theoretical method is often referred to as an analytical approach
while the terms numerical and computational are used interchangeably.

In the experimental approach, a model would first need to be de-
signed and constructed. The model must have provisions for measuring
necessary parameters and should be compatible with an existing ex-
perimental facilities. The measurements having been completed, cor-
rection factors can be applied to the raw data to produce the final re-
sults. The experimental approach has the capability of producing the
most realistic answers for many problems; however the costs are be-
coming greater every day.

In the theoretical approach, simplifying assumptions are made in
order to make the problem tractable. The big advantage of the theoreti-
cal approach is that “clean”, general information can be obtained, in
many cases, from a simple formula. This approach is quite useful in
preliminary design work since reasonable answers can be obtained in
a minimum amount of time.

In the numerical approach, a limited number of assumptions are
made and a high speed digital computer is used to solve the resulting
equations.

In comparing the methods we note that a computer simulation is
free of some of the constraints imposed on the experimental method for
obtaining information upon which to base a design. This represents
a major advantage of the computational method which should be in-

4




creasingly important in the future. The idea of experimental testing is to
evaluate the performance of a relatively inexpensive small scale version
of the prototype design. In performing such tests, it is not always pos-
sible to simulate the true operation conditions of the prototype. This
suggests that the computational method, which has no such restrictions,
has the potential of providing information not available by other means.
On the other hand, computational methods also have limitations; among
these are computer storage and speed. Other limitations arise due to our
inability to understand and mathematically model certain complex phe-
nomena. None of these limitations of the computational method are
insurmountable in principle and current trends show reason for opti-
mism about the role of the computational method in future.

2180
Essential Vocabulary®

provisions [pra " vi3(3)ns] — cpencTra

compatible [kam~paetabl] — coBMmecTuMBIi

simplifying assumption [~ simplifaiin 3" sampf(3)n] — ynpomaro-
11ee MpeanojaokeHue

tractable [ " traektabl] — pemaemsiit

constraint [kan " streint] — orpannyenue

performance [pa” fomans] — xapakTepuCTHKH

prototype design [ prautataip di”zain] — onbsITHBII 00paser
restriction [ris “trikf()n] — orpanuveHue

computer storage — KOMIIBIOTEpHAas ITaMATh

computer speed — OBICTpOJIEICTBAE KOMIIBIOTEPA

insurmountable [ insa(:) " mauntabl] — HempeononuMeIii, HEyCTpa-
HUMBIN

TASK 2. Consult a dictionary and suggest Russian equivalents for the
following words and word combinations.

A

to refer — reference — to be referred to; to apply — appliance — applica-
tion — “applicable — "applicant — to be applied to.

* Bo Bcex paszenax mocoOust ciopa, Boweamue B Essential Vocabulary, nauel B
TOM TIOpSIZIKE, B KOTOPOM OHHU BCTPEUYAIOTCSI B OCHOBHBIX TEKCTaX, OTMEUSHHBIX OYKBOI
A. 3nmech u manee AaHBI T€ 3HAYCHHUS CIIOB, KOTOpPBIE HY)KHO 3HATh, YTOOBI MEPEBECTH
9THU TEKCTHI HA PYCCKUH S3BIK.



B

in terms of, to be free of smth., on the other hand, current trends, to
show reason.

TASK 3. Answer the questions.

1. What is the difference between theoretical and experimental ap-

proaches?

2. What is the main advantage of experimental approach?

3. In what case can we use it?

4. When is the theoretical approach most useful?

5. What is the necessary condition for the numerical method use?

6. What is the main idea of experimental testing?

7. The numerical methods are universal, aren’t they? Why?

8. Is it possible to use computational methods in any case? Why?

9. What are the limitations of the numerical approach?

10. Will the numerical methods replace analytical and experimental
ones in future? Why?

TASK 4. Compare three methods which can be used to solve a prob-

lem.

TASK 5. Choose all passive constructions from the text and translate
them using the following grammar material.

Passive Constructions

asked

Simple Progressive Perfect
Present | 1 i taken }lflis being tabk " | It has been taken
They are asked ey are being They have been asked
asked
It was being
Past It was taken taken It had been taken
They were asked | They were being | They had been asked
asked
It will be taken It will have been taken
Future They will be They will have been

asked

to be continued



Simple Progressive Perfect
Future-in- | It would be It would have been
the-Past taken taken
They would be - They would have been
asked asked
Aciictsus, JleiicTBus, Ipo- JeticTBus, 3aBepIIeH-
Ynorpeb- | oObIYHBIE, - 1P ’ P
TEKakoIIKe B HBIC K OIMPEICICHHOMY
JICHHE MOBTOPSIEMBIE, N
JTAHHBIF MOMEHT | MOMEHTY
peryIsipHbIC

TASK 6. Translate the sentence underlined in the text, and explain the
use of Participle construction with the following grammar material. Try

to memorize it.

having + Participle Il = having finished
having been + Participle II = having been finished

Active

having + Participle II

| 00CTOSITENILCTBO

Passive

having been + Parti-
ciple II

B nepesone:

1) neempu-
4JacTHE CO-
BEPIIEHHOTO
BUZA

2) npunaa-
TOYHELIE 00-
CTOATENBLCT-
BEHHBIE
peIoxKe-
HHS C COIO-
3aMU nocie
moz2o Kax,
mak Kax

Having finished his experi-
ments he compared the re-

sults.

3aKOHYHB KCIIEPUMEHTBI,

OH CPaBHWJI PE3yJIbTATHI.

Having been translated into
many languages, this book

became known all over the

world.

Ilocne Toro xak sTa KHUTra
ObuTa TIepeBeeHa Ha MHO-
THe€ SI3BIKH, OHA CTaJla U3-
BECTHA BO BCEM MHpE.



TASK 7. Translate from Russian into English.

HcTopust BBIYMCIUTENBHOW THAPOMEXAHUKM TECHO CBSI3aHA C pas-
ButeM DBM. [lo koHna BTopoii MEUpOBO#i BOMHBI OOJIBITMHCTBO 33124
pemanoch aHAIUTUYECKUMH M JKCIEPUMEHTAIbHBIMU MeToaamu. o
3TOTO JIMIIb OTACIbHBIE TMOHEPHl IPUMEHSUIA YUCIIEHHBIE METOABI [UIS
pemeHus 3a1a4. PacdeTsl BBINOIHAINCH BPYUHYIO, H KaXI0€ PEIICHUE
OBUIO PE3yNbTaTOM OTPOMHOM PabOTHl M TPEOOBAIO OUYEHH MHOTO Bpe-
menu. C nosiBinenneM DBM pyTuHHas pabota, cBs3aHHas C MOJTY4YCHH-
€M pe3yJIbTaTOB IPH YHCICHHOM pPEIICHUH, MPOBOAUTCSA ITOBOJIBHO
IIPOCTO.

WNHorna Hauano COBPEMEHHOW BBIYUCIUTEIBHON MaTEMAaTUKH OTHO-
cat k 1928 r., korga craiam 00CYXAaThCs BOMPOCHI CYIIECTBOBAHUSA H
€MHCTBEHHOCTH PELICHHs YPAaBHEHU B YACTHBIX MPOU3BOJHBIX.

TASK 8. Translate the text with a dictionary.

Text 1 B. What is Mathematics?

Mathematics is a fusion of skillful operations with concepts and
rules invented just for this purpose. The principal emphasis is on in-
vention of concepts, which go beyond those contained in the axioms.
Those are defined with a view of permitting ingenious logical opera-
tions which appeal to our aesthetic sense both as operations and also in
their results of great generality and simplicity. Without concepts
a mathematician would not go far. Those may or may not be suggested
by the actual world. Mathematics is independent of material objects. In
mathematics the word “exists” can have only one meaning: it signifies
exemption from contradiction. In fact most of the advanced concepts in
mathematics are those on which a mathematician can demonstrate his
ingenuity and sense of beauty. Take for example “complex numbers”,
the introduction of which cannot be suggested by physical observations.
A mathematician’s interest in complex numbers lies in that many beau-
tiful theorems in analytical functions owe their origin to the introduc-
tion of complex numbers. It so happened that much later complex num-
bers became essential in the formulation of quantum mechanics where
they are not a calculational trick of applied mathematics. Indeed
mathematics can not be defined without acknowledging its most obvi-
ous feature: namely, that it is interesting. It is appropriate to mention
Cambridge Mathematician Godfrey Hardy and his book “A Mathemati-
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cian’s Apology”, where he wrote: “A mathematician, like a painter or
a poet is a maker of patterns. If his patterns are more permanent than
theirs, it is because they are made in the ideas. The matematician’s
patterns like the painter’s or poet’s must be beautiful; the ideas, like the
colours or the words, must fit together in a harmonious way. Beauty is
the first test, there is no place in the world for ugly mathematics.” The
role which mathematics plays in physical sciences, where one is con-
cerned to understand basic mysteries of nature, has also beauty of its
own and a source of joy and excitement to its practitioners. Indeed
“a scientist worthy of name, above all a mathematician, experiences in
his work the same impression as an artist, his pleasure is as great and of
the same nature”.

2250

TASK 9. Translate the text with a dictionary.

Text 1 C. What is a Mathematical Problem Solution?

To solve a mathematical problem originally meant to find its com-
plete numerical solution. Gradually it became clear that such explicit
solutions are possible only in explicit cases, that in general one must be
satisfied with a scheme by which the solution may be determined ap-
proximately, though with any desired accuracy. Something quite differ-
ent is very frequently offered as the solution of a mathematical prob-
lem, namely a representation of the solution in terms of the data of
a problem; although it is in principle possible to devise a scheme for
numerical calculation from such a representation, the question remains:
What actually is the solution? Mathematicians, in their search for re-
presentations of solutions, have often modified the meaning of
“solution” even further; to solve a problem has become simply to prove
the unique existence of a solution.

Clearly, if a mathematical problem is the correct expression of a
physical one it has a unique solution, for the physical situation to be
determined from given data does actually occur. Thus to know that
certain mathematical problems have unique solutions might seem to
have no significance in mathematical physics. It would perhaps have
none if it were obvious that the physical problem is correctly expressed
in mathematical terms. But frequently this is not obvious at all.

9



The statement that a unique solution exists may then serve as a partial
verification of the correctness of the mathematical expression of the
problem. If the solution is not unique the data given are not sufficient;
if the solution doesn’t exist, the data are incompatible and fewer should
be given.

1440
TASK 10. Translate the text with a dictionary.

Text 1 D. Mathematics in British Universities in the
Seventeenth Century

By the beginning of the 17th century English Universities had par-
tially revised their opinion of Mathematics and started to increase
the quality of Mathematics instruction available. Oxford and Cam-
bridge had both managed to produce several Mathematicians of excel-
lent quality, despite the lack of support and encouragement those
wishing to study the subject received. This changed when the first
Chair in Geometry was set up in Oxford in 1619, six years after the
Mathematics Chair in Aberdin started being held by a regent who
taught Arithmetic, Geometry and Classical Physics. Cambridge was
much slower in recognition Mathematics as anything other than a sub-
division of the three Philisiphies, and the Lucasian Chair in Mathemat-
ics was not established in 1662. Although this increase in education in
Mathematics was noticeable, the continued separation of University
Mathematics and the commercial and industrial needs of the general
populace continued and so a new educational establishment was
formed.

Grasham College, founded in the late 1650’s, was intended to pro-
vide a much more practical and useful knowledge of the sciences. It
was vastly successful in this aim, giving public lectures in both Latin
and English on those topics drawn from Geometry, Astronomy and
Mathematics which attracted large numbers of people. It was through
Grasham’s that Logarithms and Trigonometrical advances relating to
Navigation were spread so quickly after their development. It was also
Grasham College that was later called the Royal Society of London.
Other Colleges and Universities proposed to help spread the knowledge
of the Mathematical Sciences.

Schools and Colleges varied a great deal in curriculum and stan-
dards. Some of them were comparable to Oxford and Cambridge and
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students were allowed to graduate from Edinburgh University after only
a single year’s extra study. These institutions were not the only source
of learning, private tutors also picked up on the need for practical
mathematical education and rapidly advertised their skills in this area.

1840
TASK 11. Translate the text with a dictionary.

Text 1 E. Semantic Networks (I)

A computer or robot seems stupid when you have to tell it exactly
what to do and how to do it. One aim of Artificial Intelligence (Al) is to
let you just describe your problem and have the machine solve it with
general reasoning techniques. Typically, a general purpose reasoning
program operates on a formal description of the particular problem.
Like a capable human being, the program may need to use background
knowledge of the subject area along with general common sense
knowledge about the world. Somehow this knowledge must be repre-
sented in the machine. Recently attention in Al has shifted away from
reasoning programs to knowledge representation as the primary chal-
lenge. Instead of using natural languages (which are highly arbitrary
and ambiguous), such knowledge is often represented using abstract
conceptual structures called semantic networks.

Certain computing tasks vital to industry, the professions, and the
military have reached a practical limit beyond which conventional
computing (ordinary data processing and mathematical modeling) can-
not go. These tasks require explicit, in-depth conceptual analysis, rather
than just repetitive processing of the elements of a model. In an Al
system, the concepts and principles of the subject domain are arranged
in an ordered structure called a knowledge base. Transcending mere
storage and retrieval of asserted facts, the computer uses this structure
to infer other knowledge from that which has been stored directly. This
depends on using the fundamental semantic structure of the concepts
involved, as opposed to the syntactic (grammar) structure of any par-
ticular language.

Several quite different sentences in English (or other languages) can
all have the same essential meaning and underlying semantic structure:
a network of interrelated conceptual units. A network is also a con-
venient way to organize information in a computer or database.

1950
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UNIT 2

TASK 1. Read and translate the text.

Text 2 A. Computational (Numerical) Methods

The development of the high-speed digital computer has had a great
impact on the way in which principles from the sciences of fluid me-
chanics and heat transfer are applied to problems of design in modern
engineering practice. Problems can now be solved at a very little cost in
a few seconds of computer time which would have taken years to work
out with the computational methods and computers available three-four
decades ago. The ready availability of previously unimaginable com-
puting power has stimulated many changes. These were first noticeable
in industry and research laboratories where the need to solve complex
problems was the most urgent. More recently, changes brought about
by the computer have been occurring in university classrooms where
students are being exposed to the fundamentals which must be mastered
in order to make the best use of modern computational tools.

We have been witnessing the rise to importance of a new methodo-
logy for attacking the complex problems in fluid mechanics and heat
transfer which has become known as computational fluid dynamics. In
the computational (or numerical) approach the equations (usually in
partial differential form) which govern a process of interest are solved
numerically. Some of the ideas are very old. The evolution of numerical
methods, especially finite-difference methods for solving ordinary and
partial differential equations began at about the turn of the century.
The automatic digital computer was invented by J.V. Atanasoff in the
late 1930’s and was used from nearly the beginning to solve problems
in fluid dynamics. Still, these events did not revolutionize engineering
practice. The explosion in computational activity did not begin until
a third ingredient, general availability of high-speed digital computers,
occurred in the 1960’s.

Traditionally, both experimental and theoretical methods have been
used to develop designs for equipment and vehicles involving fluid
flow and heat transfer. With the advent of the digital computer, a third
method, the numerical approach, has become available. Although ex-
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perimentation continues to be important, especially when the flows in-
volved are very complex, the trend is clearly toward greater reliance on
computer based predictions in design.

The suggestion here is not that computational methods will soon
completely replace experimental testing as a means to gather informa-
tion for design purposes. Rather it is believed that computer methods
are likely to be used more extensively in the future. The need for ex-
periments will probably remain for some time in some applications
where it is presently not economically feasible to utilize computational
models which are free of empiricism. In most design situations it will
still be necessary to employ some experimental testing. However com-
puter studies can be used to reduce the range of conditions over which
testing is required.

2850

Essential Vocabulary

fluid mechanics [ " flu(:)id mi” kaeniks] — runpomexannka

heat transfer [hi:t “traensfa(:)] — Terutonepenaua

computational approach [ kompju “teifanl 8" prautf] — BbuucIu-
TETLHBIA MOAX0 (METO)

numerical approach [nju(:) merik(3)l o prautf] — u4KcIeHHBIN
mo1xo (MeTo.)

partial differential equation [“pa:[(3)|  difa renf(3)! i”kweif(3)n]
— YpaBHEHHE B YACTHBIX MPOU3BOIHBIX

to govern [ gAv(3)n] — peryaupoBaTh, yIpaBIsiTh

to govern a process [ gAv()n @ " prausas] — OMUCHIBATE MPOIIECC
finite-difference method [ fainait “difr(@)ns "meBad] — meroxn
KOHEYHBIX Pa3HOCTEH

advent [~ advant] — nosBiieHHEe, TPUOBITHE, TPUXOJ

empiricism [em " prisizm] — SMIUPU3M, IMITUPUIECKUAN BBIBOJI, M-
nupuiecKas nHpopMaus

TASK 2. Consult a dictionary and suggest Russian equivalents for the
following words and word combinations.

A

to expose — to be exposed to; to work out — to work out a problem;
to involve — equipment involving fluid flow — the flows involved;
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to solve — to solve a problem — solvability — solvable — solvency — sol-
vent; avail — available [3 " veilabl] — ready availability [a veila” biliti]
— of no avail — to avail [3"veil]; reliance [ri " laians] on smth. — to rely
[ri”lai] on smth.; in order to — on the order of .

B

to master smth., to have a great impact on smth., to take smb. some
time to do smth., to witness smth., at the turn of the century, the explo-

sion in activity, economically feasible, decade [ dekeid], range of con-
ditions.

TASK 3. Answer the questions.

1. What has had a great impact on the way of problem solving in
modern engineering practice?

2. Why did the development of computer technology stimulate
changes in science and industry?

3. Where did the changes brought about by the computer occur
first?

4. When was the automatic digital computer invented? Who was
the inventor?

5. When did the finite-difference methods begin being widely used?

6. Was the computer widely used at that time? Why?

7. When did the high-speed digital computer appear?

8. What approaches are used for designing equipment involving
fluid flow and heat transfer?

9. Why can’t computational methods completely replace experi-
mental testing?

10. What is the author’s conclusion on the point?

TASK 4. Give a gist of the text.

TASK 5. Translate the sentence underlined in the text and explain the
grammar construction using th following table.
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Complex Subject + Infinitive Constructions

L S TOBOPSIT,
to say is said + inf., was said + inf. p
TOBOPHJIN
. . . HM3BECTHO, OBLIO
to know is known+ inf., was known + inf.
H3BECTHO
. . . COO00MIaroT
to report is reported+ inf., was reported+ inf. HIAOT,
COOOIIMITH
. . . MPE/IIOIararoT
to suppose | is supposed + inf., was supposed + inf. pen ’
MPEANOIarain
. . . OKHIAIOT,
to expect | is expected + inf., was expected + inf. A
OXKHUIAITH
to con- . . . . . CUMTAIOT,
- is considered + inf., was considered + inf.
sider CUHTAJIA
to believe | is believed + inf., was believed + inf. 10JIararoT,
to assume | is assumed + inf., was assumed + inf. roJjarajiu
to think is thought + inf., was thought + inf,, JIyMAIOT, TyMaJu
. . KaXeTcst
to seem seems + inf.,, seemed + inf. ’
Ka3aJ10Ch
to appear appears + inf., appeared + inf.
PP PP - PP - OKa3bIBACTCS,
to prove proves + inf., proved + inf.
- - 0Ka3aJIoCh
to happen | happens + inf., happened + inf.
to be .o . . . BEPOSTHO, OBLIO
. is likely + inf., was likely + inf. p
likely BEPOSATHO
HEBEPOSITHO
to be un- . . . . . ’
likel is unlikely + inf., was unlikely+ inf. ObLI0
Y HEBEPOSITHO
0e3yCIIOBHO,
to be sure | is sure + inf., was sure + inf. OBLIO
0€3yCIOBHO
to be cer- HECOMHEHHO,
tain is certain + inf., was certain+ inf. ObLIO
HECOMHECHHO

TASK 6. Mind the pronunciation of the nouns from Latin and Greek in
singular and plural forms. Learn them by heart.

Singular

Plural

alumna [2"1Amn as] — BBITYCKHUK

alumni [2lAmnai] — BBIIYCKHUKH

antenna [&n’tena] — aHTCHHA

antennae [en’teni:] — aHTCHHBI

axis [ &ksis] — ochb

axes[ ‘&ksi:z] —ocu

basis [ ‘beisis] — 6a3uc, ocHOBa

bases[ ‘beisi:z] — 6a3uchl, OCHOBBI

to be continued
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Singular

Plural

calculus [ keelkjulos] —
HCUYHUCIICHUE

calculi [ ’keaelkjulai] — ncancrenus

curriculum [ka rikjulom] —
y4eOHBIH IIaH

curricula [ko rikjule] — yueGHbIC
TUIaHBI

crisis [ kraisis] — kpu3uc

crises [ 'kraisi:z] — KpU3HUCHI

datum ['deitom] — nanHas
BCJIMYMHA

data ['deito] — maHHBIE

formula ["f0:mjulo] — popmyna

formulae ["fO:mjuli:] — popmyb

hypotesis [hai p00isis] —
IMIIOTE3a

hypoteses [hai'p00i si:z] — rumore3sbr

index [ ‘indeks] — ykazaTtens

indices [ 'inde si:z | — yka3aTenu

matrix [ ‘meitriks] — marpua

matrices [ ‘meitrisi:z] — MaTpHUIIBI

medium [ ‘mi:djom] — cpena

media [ 'mi:dja] — cpeasl

nucleus [ ‘nju:klis] — stmpo

nuclei [ 'nju:kliai] — sapa

phenomenon [fi'nOminan] —
SIBJICHHE

phenomena [fi'nOmins] — siBneHUS

radius [ reidjos] — paauyc

radii [ ‘reidjai] — paguycsl

TASK 7. Translate from Russian into English.

Hns onmcaHus (U3MYECKOTO MHpa MBI OOBIYHO IPUMEHSEM
€BKJIMJIOBY T€OMETPHUIO U CUUTAEM €€ UCTUHHOH. J[pyrue reomerpuu, B
OCHOBE KOTOPBIX JIEKUT CUCTEMa aKCUOM, OTJIMYHAsI OT CUCTEMBI aKCH-
oM EBrinaa, vHOrAa Ha3bIBAIOT «BOOOPAXKAEMBIMH T'E€OMETPHAMU».
[Ipumepom MoxkeT ciayxuTh reomeTpusi Pumana u JlobaueBckoro. Paz-
BUTHE (DM3WKU W MareMaTHKd B XIX Beke MpPUBENO K TOMY, 4TO I
onucanusl (GU3NIECKOTO MUPA CTaJIM NMPUMEHSTHCS APYIHe FE€OMETPUU
U BOIIPOC 00 MCTHHHOCTH TOW WJIM MHOH T€OMETPHM IIpEeBpaTUiCs B
cnoxHy0 ¢unocodekyro mpodremy. OOpa3oMm MpsIMON JIMHUU B T€O-
MeTpuu EBKINIAa MBI CYATAEM CBETOBOM JIy4, HO B JEVCTBUTEIILHOCTH B
IPaBUTALMOHHOM I10JIE€ CBETOBBIE JIydH HCKPHBIISIOTCS U OOJIBILE COOT-
BETCTBYIOT 00pa3y €BKJIMIOBON OKPYKHOCTH, YeM TpsMOU nuHuN. Bo-
Mpoc 00 UCTUHHOCTH (PAKTHUECKH 3aMEHSIETCS BOIPOCOM 00 yIoOcTBe
onucanus GU3NUECKUX SIBICHUM.

TASK 8. Translate the text with a dictionary.

Text 2 B. Applied Mathematics

The application of mathematics to industrial problems involves:
1) the formulation of problems which are amendable to mathemati-
cal investigation;
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2) mathematical modelling;

3) the solution of the mathematical problem;

4) the interpretation of the results.

These steps are not clearly separated; the solution of the mathemati-
cal problem may lead to a refinement in the mathematical model or
a change in the nature of the questions to be tackled by mathematical
methods.

The problem will often initially be a vague question. What should
the thickness of a magnetic screen be in order to reduce the magnetic
flux density to the acceptable amount? What is the best strategy for
using turbines and sluices in the proposed Severn barrage in order to
maximize the energy output? How should the process of cooling fish be
controlled in order to ensure thorough freezing? Such problems are
usually posed by a team of engineers and scientists, often with the aid
of a mathematician.

When a precise physical formulation of the problem has been ob-
tained it must be approximated by a mathematical model. Often there
will be several competing models of varying degrees of sophistication.
Physical intuition and experience are invaluable to the modeling phase.
The ideal is to study the simplest model which accurately describes
the aspects of the problem in which one is interested. Occasionally nu-
merical methods are unnecessary and analytical techniques will provide
adequate understanding. However, the increasing power of ready avail-
able computers coupled with the development of high quality numerical
algorithms and software allows the study of increasingly more sophisti-
cated and complex mathematical models.

1700

TASK 9. Translate the text with a dictionary.

Text 2 C. The Laws of Nature Are Written in the Language
of Mathematics (I)

First there is a mundane role which is to facilitate for the physicists
the numerical calculation of certain constants or the integration of cer-
tain differential equations. Mathematics, does however, play a more
sovereign role in which we will be concerned and bring out how higher
mathematics found applications in subtle empirical problems.
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“All laws are deduced from experiment, but to enunciate them,
a special language is needed, ordinary language is too poor, it is besides
too vague, to express relations so delicate, so rich and so precise”. This
is attributed to Galilleo, more than 300 years ago.

Let us discuss an example.

The basic axioms of Newtonian mathematical physics is stated in
the preface of the first edition of the Principia: rational mechanics ought
to address “motion” with the same precision as geometry handles
the size and shape of idealized objects. The association of “motion”
(particularly the change in motion) with “mathematics” was a stroke of
genius. The mathematical language in which it is formulated contained
the concept of second derivative — not a very immediate concept. The
act of writing down a fundamental law is a rather singular and rare
event. It is a miracle that in spite of the baffling complexity in the
world, certain regularities in the events could be discovered. A monu-
mental example of such a law is Newton’s law of gravitation — a single
law which explained everything from planetary motion to the terrestrial
motion of pendulums and which appears simple to the mathematicians
and which proved accurate beyond all reasonable expectations but still
it is a law of limited scope.

1730

TASK 10. Translate the text with a dictionary.

Text 2 D. The Teaching of Mathematics in Britain
in the Eighteenth Century

The effect of the Reformation in England carried on into the 18th
century with both schools and Universities being too closely associated
with the Church and State, partly due to the Act of Uniformity. Since
neither encouraged progressive thought and innovation this resulted in
a period of stagnation and decline. When Leeds Grammar School tried
to change their curriculum from the traditional subjects of the Trivium
to include French and Mathematics it resulted in Lord Eldon’s judg-
ment which was very conservative (despite his own broad education),
and prohibited future changes in Grammar School syllabuses. This did
not change until Acts of 1812 and 1840 the first of which gave schools
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the possibility of limited changes to their curriculum but they had to
apply to make any permanent changes, and the second which gave
schools full power over what they taught.

With this restriction to the traditional syllabus many English
Grammar schools forged associations with local private and dissident
establishments, such as that formed between the Newcastle Grammar
school and Charles Hutton’s school in the same city. This meant that
the Grammar students could take classes at Hutton’s school in increas-
ingly popular subjects such as Mathematics and French. This could
only happen in the larger towns and cities which were well supplied
with institutions supported either by philanthropists or groups of mer-
chants wishing to provide a more practical education for their children.
Mathematics and book-keeping courses were becoming more and more
in demand as people began to realize that their job prospects increased
with their knowledge and skills in these areas.

To provide the adult market with an equal opportunity to improve
their computational skills, some of the better educated teachers and
headmasters ran night classes and private lecture courses for groups of
paying individuals. Many teachers went to night classes themselves in
order to increase the number of topics that they could advertise for tu-
telage. Teaching such subjects was becoming more common because of
an Act passed in 1713 (called the Act to Prevent Growth of Schism)
which excluded teachers of Mathematics, Navigation and Mechanical
art from swearing the oath included in the Act of Uniformity.

Other methods of improving your knowledge included attending
public lectures given by the newly formed and rapidly increasing
Mathematics Society, set up in 1717, which was predominantly aimed
at the artisan and middle classes. These lectures were often very popu-
lar and the attendance could reach over three hundred. Lectures and
private tutelage were more popular than they had been because of ad-
vances in teaching methods which made the courses more interesting.

Improvements in Mathematical education in Scotland moved along
different lines. Many of the Scottish Councils were impressed with
Christ's Hospital, Grasham College, and the Dissenting schools recently
set up in England. Perth Council in particular ordered an enquiry into
the academies and colleges appearing in England. This resulted in the
Rev’. James Bonar advocating a two-session program leading to

* Reverend — MPEnoA00HBI.
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a “modern” university course, and proposing that Perth was a suitable
place for such higher education. The new academy, founded between
1760 and 1766, was the first Scottish school to teach science on a com-
prehensive scale. Sixteen other academies were set up (and survived)
over the next seventy years in Dundee, Banff, Inverness and in other
areas. Many of these were designed specifically to be mathematically
and scientifically strong to compete with Grammar Schools like that in
Ayr. Curriculum revision and improvement was soon forced by these
new Academies and the Grammar schools (unrestricted by Lord Eldon's
ruling) improved their Mathematics teaching abilities and the Acade-
mies soon introduced Latin to their already impressive range of courses.
Perth Academy alone originally offered Higher Arithmetic, Mathema-
tics, Geography, Logic, Algebra, Differential Calculus, Trigonometry,
Navigation, Physics, Optics and many other subjects.

The strength of these new academies also pushed smaller schools
and enterprises into copying them, introducing courses on the commer-
cial applications of Mathematics. These smaller establishments were
often sponsored by groups of philanthropists or similarly like minded
individuals. Many other schools, or hospitals as they were then called,
were set up using the money of successful merchants, most especially
in Edinburgh and Glasgow. George Heriot's was the first, founded in
the mid 17th century, and was intended to provide an education for the
poor youths of Edinburgh. Two others followed in the same century,
but the rate increased during the 18th century. The curriculum origi-
nally offered by these hospitals was limited, but rapidly grew through
the demands of industry and the need to compete with the Academies.

4719

TASK 10. Translate the text with a dictionary.

Text 2 E. Semantic Networks (II)

A semantic network or net represents knowledge as a net-like
graph. Throughout the text, “graph” means an interconnected vertex-
and arc (dot-and-line) structure as studied in Graph Theory rather than a
graph plotted in Cartesian X-Y coordinates. An idea, event, situation or
object almost always has a composite structure; this is represented in a
semantic network by a corresponding structure of nodes (drawn as cir-
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cles or boxes) representing conceptual units, and directed links (drawn
as arrows between the nodes) representing the relations between the
units.

An abstract (graph-theoretic) network can be diagrammed, defined
mathematically, programmed in a computer, or hard-wired electroni-
cally. It becomes semantic when you assign a meaning to each node
and link. Unlike specialized networks and diagrams, semantic networks
aim to represent a kind of knowledge which can be described in natural
language. A semantic network system includes not only the explicitly
stored net structure but also methods for automatically deriving from
that a much larger structure or body of implied knowledge.

Let’s consider a relational graph describing two individuals (tiger-
cub Toby and the unnamed tigress) with their asserted qualities and
relations, on top of which is an abstraction hierarchy of more general
concepts and relations. From this combined structure it is possible to
deduce things about the composite concept as a whole and its relations
to other concepts. For example, the assertion that Toby is hungry im-
plies that he is a conscious animal, and everything true of conscious
animals is automatically true of Toby. Almost all systems have struc-
tured concept-hierarchies used for this kind of derivation, and these
hierarchies themselves are also semantic networks.

1770

Unit 3

TASK 1. Read and translate the text.

Text 3 A. Physical and Mathematical Classification of Partial
Differential Equations

Many important physical processes in nature are governed by par-
tial differential equations (PDE’s). For this reason it is important to un-
derstand the physical behavior of the model represented by the PDE. In
addition, knowledge of the mathematical character, properties and so-
lution of the governing equations is required. Here we will discuss the
physical significance and the mathematical behaviour of the most
common types of the PDE’s encountered in fluid mechanics and heat
transfer.
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Physical classification
Equilibrium problems

Equilibrium problems are problems in which a solution of a given
partial differential equation is desired in a closed domain subject to
a prescribed set of boundary conditions. Equilibrium problems are
boundary value problems. Examples of such problems include steady-
state temperature distributions, incompressible inviscid flows, and
equilibrium stress distributions in solids.

Sometimes equilibrium problems are referred to as jury problems.
This is an apt name since the solution of the partial differential equation
at every point in the domain depends upon the prescribed boundary
condition at every point on the boundary. In this sense the boundary
conditions are certainly the jury for the solution in the domain. Mathe-
matically, equilibrium problems are governed by elliptic PDE’s.

Marching problems

Marching or propagation problems are transient or transient-like
problems where the solution of a partial differential equation is required
on an open domain subject to a set of initial conditions and a set of
boundary conditions. Problems in this category are initial value or ini-
tial boundary value problems. The solution must be computed by
marching outward from the initial data surface while satisfying
the boundary conditions. Mathematically these problems are governed
by either hyperbolic or parabolic partial differential equations.

Mathematical classification

A general second-order partial differential equation is the standard
model used to present the mathematical classification of partial dif-
ferential equations. There are three types of partial differential equa-
tions. These are the elliptic, parabolic, and hyperbolic types. This ter-
minology used in classifying PDE’s is by analogy with the general sec-
ond-order equations in analytic geometry. The wave equation, the heat
equation, and Laplace’s equation are examples of these types of equa-
tions.

In the classification of partial differential equations, many well-
known names are associated with the specific problem types. The most

22



well-known problem in the hyperbolic class is the Cauchy problem.
This problem requires that one obtains a solution u to a hyperbolic PDE
with initial data specified along a curve C. A very important theorem in
mathematics assures us that a solution to the Cauchy problem exists.
This is the Cauchy-Kowalevsky theorem. This theorem asserts that if

the initial data are analytic in the neighborhood of x(, yg and the func-
tion uy,, is analytic there, a unique analytic solution for u exists in the

neighborhood of xg, yg.

Some discussion is warranted regarding the type of problem speci-
fication which is allowed for hyperbolic equations. For the second-
order wave equation, initial conditions are required on the unknown
function and its first derivatives along some curve C. It is important to
observe that the curve C must not coincide with a characteristic of
the differential equation. If an attempt is made to solve an initial value
problem with characteristic initial data, a unique solution cannot be
obtained. The problem is said to be “ill-posed”.

In order for a problem involving a partial differential equation to be
well-posed, the solution to the problem must exist and be unique, and
the solution must depend continuously upon the initial or boundary
data.
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Essential Vocabulary

governing equation — ypaBHEHHE, OMTUCHIBAOIIEE (TTPOIECC)
equations encountered in fluid mechanics — ypaBHeHus1, BcTpeuaro-
Iecs B MEXaHUKE KUIKOCTEN

equilibrium problems [ i:kwi”librisam “prablams] — 3agaun
paBHOBECHS

closed domain [klauzd dau” mein] — 3amkHyTas 06nacTh

boundary value [ “baund(®)ri “valju:] — rpanuuHOE 3HAUCHHE
steady-state temperature distribution [ stedi steit “tempritfa
_distri” bju:f(3)n] — ycTaHOBUBIIIEECS TEMITEPATYPHOE PABHOBECHE
inviscid [ in " visid] — HeBsI3Kuii, WaeaNbHO TEKYIHI

inviscid flow [flau] — moTok 6e3 yuera BsA3KOCTH
equilibrium stress distributions — pacnpeaeneHre paBHOBECHBIX
HaIPSHKCHUN
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apt name [®pt neim] — noaxoasIee Ha3BaHNE
marching [ “ma:tfin] problem — mapiesas 3anada

propagation [ propa”geif(a)n] problem — 3amaua pacmpoctpane-
HHA

transient [ " traenziant] problem — HecTanmoHapHas 3a1a4a

initial [i " nif(3)I] condition — HauaNBHOE yCIIOBUE

jury [~ d3uari] problem — 3amaua cyxaeHus

elliptic [i " liptik] — smumnTuaeckuii

hyperbolic [  haipa(:) " balik] — runepbonuueckmii

parabolic [, paers " bolik] — mapabonuueckuii

assure [3 fua] — yBepsTh, yOSIKIATh, FAPAHTUPOBATb,

assert [9 " sa:t] — yTBepKAaTh, TOKA3bIBATh

warrant [ “war(3)nt] — onpaB/pIBaTh, TAPaHTHPOBATH

derivative [di rivativ] — mpou3BoiHas

ill-posed [il pauzd] problem — HEKOPPEKTHO TIOCTaBIEHHAs 33/1a49a
well-posed [wel pauzd] problem — koppekTHO ocTaBIeHHAs 3a/a9a

TASK 2. Consult a dictionary and suggest Russian equivalents for the
following words and word combinations:

subject — to traverse a subject — to wander from the subject — subject
matter — subject for smth. — delicate subject — on the subject of — subject
to — to subject — subjection — subjective — subjective case —
subjectivism — subjectivity; outward — outward things — outwardness —
outwardly — toward — towards — northward.

TASK 3. Answer the questions.

1. How can we classify the physical behaviour of the model repre-
sented by the PDE’s?

2. What is equlibrium problem?

3. Why are equilibrium problems sometimes refferred to as jury
problems?

4. Which problems are governed by elliptic PDE’s?

5. What are the types of partial differential equations? Which physi-
cal phenomena do they represent?

6. What does Cauchy-Kowalevsky theorem assert?
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7. When can a unique solution of an initial value problem be ob-

tained?

8. When is the problem said to be “ill-posed”?

TASK 4. Speak on:

a) physical classification of partial differential equations;
b) mathematical classification of partial differential equations.

TASK 5. Translate the sentence underlined in the text, and explain the

Grammar construction using the follonwing table.

Modal Verbs and their Equivalents

Present

Past

Future

Can

To be able to

Mour — 06nagarth
¢$u3ngeckoi nim
YMCTBEHHOU CITOCOOHOCTHIO

Could
Was, were able to

Will be able to

May

To be allowed to

To be permitted to

Moub — UMeTb pa3pereHue
HITH BO3MOXHOCTh

Might

Was, were allowed to
Was, were permitted
to

will be allowed to
will be permitted to

Must

To be to

To have to

BEITE 1OKHEBIM,
00s13aHHBIM, BBIHYKICHHBIM

was, were to
had to

will be to
will have to

Ought to
clieoBao Obl, Clienyer,
JIOJDKEH,

Ought to

Should
Xoporio 051, CleayerT,
00s13aH

to be continued
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Present Past Future

Would Would = used to -
[Ipucyuiee coiicTBo, OOBIYHOE U TIOBTOPSI-
XapaKTepuCTHKa omieecs IeHCTBHE

Wouldn’t

YnopHoe HexellaHue

BBINOJIHUTD JeiicTBUE
Needn’t - -
He HYXHO, HE cienyeT

TASK 6. Find all “ing-ending” forms in the text, explain them and
translate all the words given in the following table.

“Ing-ending” Forms

Noun a morning a building a meaning
Adjective interesting following misleading
Participle I expressing thinking discussing
Gerund in solving. by measuring without finding
Verbal Noun | the measuring | the understanding -
of smth of smth.
Preposition concerning regarding owing to
Conjunction providing supposing seeing
Adverb according notwithstanding running

TASK 7. Translate from Russian into English.

Marematuk X. ['onp0ax BBIABHHYIN THIIOTE3Y, YTO JFOOOE YETHOE
YHCJIO MOXXHO NMPEACTAaBUTH B BUJAC CYMMBI JIBYX MPOCTBIX YUCCII. Ota
TUIOTE3a J0 CUX IMOp ocTaercsl HenokazaHHoW. [IpoBepeHo, 4yTo OHa
cIipaBeuIMBa ISl 4yeTHbIX uucen BILIOTh A0 100 000 000. Mcnoms3ys
OJICKTPOHHBIC BBIYUCIIUTCIIBHLIC MAlIWMHBI, MOXXHO IaXC CO6paTI> cTa-
TUCTUYCCKUC JAaHHBIC, MMOKA3bIBAOMINUEC, CKOJIBKHUMU PA3JIMYHBIMH CIIO-
cobaMM TO WIM MHOE YETHOE YHUCIO 2x pa30uBaeTcs Ha CyMMY JABYX
mpocThiX. OKa3bIBaeTCs, YUCIO CIIOCOOOB JOBOJBHO OBICTPO pacTeT ¢
yBenmyenueM x. Axanemuk W.M. Bunorpamor mokaszan, uro jro0oe
JOCTaTOYHO OOJIBIIOE HEYETHOE YHUCIO MOXKHO IPEACTaBUTb B BUIC
CYMMBI TPEX IPOCTHIX YHCEL.
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He cymecTByeT GopMyIbl, MO3BOJISAIONIEH 3amKcaTh CKOJIb YTOJHO
Oompimoe mpocroe uucio. V3BectHa, Hampumep, Qopmyrna Oitrepa

y=x2 +x+41,xoropas s x = 0, 1, 2, ..., 39 gaer mis y mpocroe

yrcno. OQHAKO OCTaeTCsi HEM3BECTHBIM, UMEETCs I OECKOHEYHO MHO-
ro 4ucel1, JUIsl KOTOPbIX MHOTOwIeH Jiinepa naet mnpocroe yucio. Cy-
HIECTBYIOT MPOCThIE YHchaa — “ONU3Henbl”, OTIMYAIOUIHecs IPYr OT
Ipyra Ha 2, Hanipumep 11 u 13, 29 u 31. Ho noka ocraercs HEU3BECT-
HBIM, KOHEYHO WJIM OECKOHEYHO YHCJIO TAKUX “‘OJU3HEI0B”.

TASK 8. Translate the text with a dictionary.

Text 3 B. Applications of Mathematics

Mathematicians have always been fascinated by numbers. One of
the most famous problems is Fermat’s Last Theorem that, if n>3,

the equation x" + " = z" has no solutions with x, y, z all nonzero inte-
gers. An older problem is to show that one cannot construct a line of

length 32 with ruler and compass, starting with just a unit length.

Often the solution to a problem will lie outside the confines within
which the problem has been posed, and theories must be constructed in
order to prove a claim.

These are questions in pure mathematics. In applied mathematics
we use mathematical concepts to explain phenomena that occur in
the real world.

For example, lifting gear is required to meet certain standards. In
particular chain links must comply to precise specifications. Essentially
the problem is one of multivariate approximation with the requirement
that the design formula be as simple and straightforward as possible.

During the last twenty years there has been considerable interest in
developing alternative energy sources. Scientists consider problems
arising from tidal power generation by means of a barrage across
the river Severn and develop techniques for determining the maximal
average energy output using optimal control theory. The first model
provides a simple test example in which power is extracted from an
oscillating system while the second model simulates tidal power gen-
eration from flow across a tidal barrage which contains both turbines
and sluices. Numerical methods for computing solutions are derived
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and the predicted optimal strategies appeared to be often in contradic-
tion to intuition.

Mathematical and numerical analysis can be used in forest ma-
nagement and environmental modeling. It is of interest to discover
the orientation of leaves of trees in a forest. A mathematical model of
this problem leads to the study of ill-posed linear Fredholm integral
equation.

The nuclear industry has a particular interest in the ageing of steel.
Stainless steel contains 15 — 20 % of chrome and 0,1 % of carbon and it
is known that, at operating temperatures, the chrome and the carbon
precipitate out with the effect that the steel is less able to withstand cor-
rosive attack. A mathematical model consists of two, nonlinearly cou-
pled, parabolic equations with very different time constants. There were
computational difficulties associated with the direct solution of
the parabolic equations because of the inherent stiffness of the problem.

If it is of interest for you, you can learn how a leopard gets its spots,
examine the intricacies of quantum theory and relativity, or study
the mathematics of financial derivatives.

2670

TASK 9. Translate the text with a dictionary.

Text 3 C. The Laws of Nuature are Written in the Language
of Mathematics (II)

The concepts of modern physics are abstract. ‘“Mathematics is
the tool specially suited for dealing with abstract concepts of any kind
and there is no limit in its power in this field” (P. Dirack). In this con-
text let us consider two of the great theories of the XIX century: Rela-
tivity and Quantum Mechanics, both of which involve mathematics of
transformations. This is because the important quantities in nature ap-
pear as the invariant or having simple transformation properties under
these transformations. Let us consider them one by one:

i) General Theory of Relativity.

Einstein gave a new concept of gravity. Gravity cannot be switched
off at will. Einstein argued that because of its permanency, gravity must
be related to some intrinsic feature of space-time. He identified this
feature as the geometry of space-time — only that this geometry is un-
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usual. Existence of matter causes the fabric of space-time to wrap
somewhat like the effect of a bowling ball placed on a foam. Such dis-
tortion to the fabric of space-time transmits the force of gravity from
one place to another. Gravity resides in the curvature of space-time.
The geometry which describes curved spaces is known as Reimann ge-
ometry.

i1) Quantum Mechanics.

There are two basic concepts in quantum mechanics: States and Ob-
servables. The states, which have no classical analogue, are vectors in
Hilbert space. The observables are dynamical variables, which although
appear in classical mechanics, are treated in quantum mechanics as
hermitian operators on state vectors. Let us also remind ourselves that
Hilbert space of quantum mechanics is complex with hermitian scalar
product and as such the use of complex numbers is necessary in
the formulation of laws of quantum mechanics.

In many cases mathematical concepts were independently deve-
loped by the physicist and recognized then as having been conceived
before by the mathematician. Quantum mechanics is a good example of
this where Dirack invented his own mathematics in his formulation of
quantum mechanics. Einstein, on the other hand, recognized Remiann
Geometry as tailor-made for implementing his view of gravitation
force.

2220

TASK 9. Translate the text with a dictionary.

Text 3 D. The Teaching of Mathematics in Britain
in the Nineteenth Century

This century saw the waning of the Church’s power over schooling
and education in Scotland. It was now generally accepted that some
level of understanding of Mathematics was absolutely necessary for
modern life, and there were few schools who did not give Mathematics
a place in a student’s timetable of classes.

Mathematics was also becoming easier, thanks to efforts made
abroad to formulate Arithmetic into a series of easily understandable
rules and operations. There was also a lot of work done on when and
how a pupil should be taught. Pestalozzi’s work of 1803 influenced
many who then incorporated his reforms into their own schools.
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The most fundamental of these were that children should start learning
Mathematics and basic Arithmetic as soon as they entered school and
that this work should be based on perception and the properties of
physical objects. He also promoted a knowledge of the names of num-
bers and the simplest of Arithmetic operations before the introduction
of figures and notation. What is perhaps most important is the position
of prominence that Mathematics was placed in his school, no other
subject was deemed more important at this stage of a pupil’s education.

Such advances took time to filter into the more traditional education
establishments. Much of Britain’s institutions were still very conserva-
tive. Not the least of which were the two English Universities. The first
half of the 19th century saw a revival of Mathematics education at
Cambridge due in part to the efforts of Peacock, Babbage, and John
Herschel who had formed the Analytical Society at Cambridge during
their undergraduate years. By 1823 the analytical methods and notation
of differential calculus made their way into the course. However, it is
obvious that even then the examinations at Cambridge were still very
narrow, and students who read more widely than the strict syllabus did
not get recognized for their ability.

A short while later in 1826 a new institution advertising itself as
being free from religious prejudice was founded. The University of
London aimed to provide an education in Mathematics and Physical
Science, Classics and Medicine. De Morgan got the chair of Mathe-
matics at the newly opened university and it is through his efforts that
methods for lecturing in Mathematics (and other subjects) improved in
leaps and bounds. At the end of his lectures, De Morgan handed out
sheets of problems based on that day’s lecture. He then expected
the students to attempt these problems and to hand in their solutions
later so that he might mark them before handing them back with cor-
rections. Hopefully they would learn from their mistakes, and he would
find out where students were having difficulty understanding the ideas
that he presented, and thereby improve his course for the following
year.

De Morgan called for the methods of teaching whereby the pupil
learnt the vocabulary of the subject, with many illustrations of the dia-
grams and constructions that they would later work with when studying
the axioms and theorems. Teacher training schools were proposed in
1839, and started up in an attempt to improve this state of affairs, but
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the reaction against this project was so great that it was rapidly
dropped. Some schools were up and running already, but privately and
these were rare. Examination and certification of teachers was not put
into general practice.

In the 1820’s a new type of school started appearing. These in-
cluded the Liverpool Institute, the London University, later renamed
the London College School, and the Kings College School. These
schools were less expensive due to being funded by a committee and,
because they had been aimed at providing education for the middle
classes, they sought more utilitarian ends. Because of its importance in
the world of trade, commerce and industry, Mathematics and other sci-
ences were given a pride of place in the syllabus.

In 1859 a Public Commission was established to inquire into
the state of popular education in England and report what measures, if
any, are required for the extension of sound and cheap elementary in-
struction to all classes of people. After that the changes and improve-
ments to education, and the place that Mathematics held in the common
curriculum, became much more rapid with several Government backed
experiments leading the way to better methods and syllabuses.
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TASK 11. Translate the text with a dictionary.
Text 3 E. Correlated Measurement Errors

Industrial process control is an area in which correlated measure-
ment errors are of interest. The tendency of some measuring instru-
ments to “drift” or “wander” over time in a serially correlated, non-
deterministic pattern was observed . If such measurement errors arise in
a single-variable process control system, one may describe the resulting
observations with univariate signal-plus-noise models. Consideration of
several product or process characteristics, however, may lead to forms
of inferential process control or Kalman filtering related to the multiple
regression model

Y =xB+q, M

where y; is an r-dimensional row vector of dependent variables, x; is
a k-dimensional row vector of independent variables, [} is a fixed &k x r
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matrix of regression coefficients, and ¢; is an r-dimensional, mean zero
“error in equation” row vector associated with the derivation of

the term y; from the linear function x;3. When neither y; nor x; is ob-
served directly one may record p-dimensional observations
Z; =, Xyp),

t=1,2,...,T,where p=r + £,

L=y +w, Xy =x+u. 2

“Inferential process control” was described as an attempt to control
a vector x; of characteristics that are difficult or impossible to measure
precisely during production, e. g., chemical composition of a product.
Control actions are therefore determined by a vector Y; of observations
on “secondary characteristics” like temperature. Given a locally linear
relationship between Y; and x; described by model (1) — (2), linear least
square prediction of x; is a relatively simple exercise, provided one
knows the coefficient matrix B and the parameters of the x,, qt, and wt
processes. Given a set of imperfect observations X; on the variables x;,

parameter estimation for inferential process control is a special case of
estimation for model (1) — (2).
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